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The ergodic theory and particularly the individual ergodic theorem were studied in many
structures. Recently the individual ergodic theorem has been proved for MV-algebras
of fuzzy sets (Riec̆an, 2000; Riec̆an and Neubrunn, 1997) and even in general MV-
algebras (Jurec̆ková, 2000). The notion of almost everywhere equality of observables
was introduced by B. Riec̆an and M. Jurec̆ková in Riec̆an and Jurec̆ková (2005). They
proved that the limit of Cesaro means is an invariant observable for P-observables. In
this paper show that the assumption of P-observable can be omitted.
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1. INTRODUCTION

The ergodic theory and particularly the individual ergodic theorem were stud-
ied in many structures (Dvurec̆enskij and Riec̆an, 1980; Harman, 1985; Harman
and Riec̆an, 1992; Jurec̆ková, 2000; Lutterová and Pulmannová, 1985; Petersen,
1983; Pulmannová, 1982; Riec̆an, 1982; Riec̆an, 2000; Riec̆an and Mundici, 2002;
Riec̆an and Neubrunn, 1997; Vrábel, 1988; Walters, 1975). Recently the individ-
ual ergodic theorem has been proved for MV-algebras of fuzzy sets (Riec̆an, 2000;
Riec̆an and Neubrunn, 1997) and even in general MV-algebras (Jurec̆ková, 2000).

In classical probability space (�,S, P ) the individual ergodic theorem
(Petersen, 1983; Walters, 1975) guarantees the existence of a random variable
ξ ∗ : � → R satisfying the following conditions:

(i) ξ ∗ is integrable and E(ξ ∗) = E(ξ ),
(ii) 1

n

∑n−1
i=0 ξ ◦ T → ξ ∗ P -almost everywhere,

(iii) ξ ∗ ◦ T = ξ ∗ P -almost everywhere,

where T : � → � is a measure preserving map, i.e., T −1(A) ∈ S and
P (T −1(A)) = P (A) for each A ∈ S, ξ : � → R is an integrable random variable
with the mean value E(ξ ).
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In connection with the generalization of property (iii) in the individual er-
godic theorem, B. Riec̆an and M. Jurec̆ková introduced the notion of almost
everywhere equality of observables (Riec̆an and Jurec̆ková, 2005). They assumed
the P-observables and proved that the limit of Cesaro means is an invariant ob-
servable. In this paper, we will show that the assumption of P-observable can be
omitted.

2. BASIC NOTIONS

In this section, we introduce the basic notions and theorems. They can be
found in (Riec̆an and Neubrunn, 1997). We consider the fuzzy quantum logic

F = {f : � → 〈0, 1〉; f is S − measurable}.
The corresponding notion to the notion of a random variable is an observable. An
observable is a mapping x : B(R) → F such that:

(O1) x(R) = 1F ,
(O2) if A ∩ B = ∅, then x(A ∪ B) = x(A) + x(B),
(O3) if An ↗ A, then x(An) ↗ x(A).

Instead of a probability measure in the Kolmogorov model there is considered
a state in F . A state is a mapping m : F → 〈0, 1〉 such that:

(S1) m(1F ) = 1
(S2) if f + g ≤ 1F , then m(f + g) = m(f ) + m(g),
(S3) if fn ↗ f , then m(fn) ↗ m(f ).

The next notion of the joint observable corresponds to the notion of the
random vector in classical probability theory. Let x, y : B(R) → F be two ob-
servables.

The joint observable of the observables x, y is a mapping h : B(R2) → F
satisfying following conditions:

(JO1) h(R2) = 1F ,

(JO2) if A ∩ B = ∅, then h(A ∪ B) = h(A) + h(B),
(JO3) if An ↗ A, then h(An) ↗ h(A),
(JO4) h(C × D) = x(C) · y(D), C,D ∈ B(R).

Recall that in F for each pair of observables x, y their joint observable exists
(see Riec̆an and Neubrunn, 1997 Theorem 8.3.2).

The transformation T : � → � is also replaced by a mapping τ : F → F .
An m-preserving transformation is a mapping τ : F → F satisfying the

following conditions:

(T1) τ (1F ) = 1F
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(T2) if f + g ≤ 1F , then τ (f + g) = τ (f ) + τ (g),
(T3) if fn ↗ f, then τ (fn) ↗ τ (f )
(T4) τ (f ) · τ (g) = τ (f · g),
(T5) τ (f ∧ g) = τ (f ) ∧ τ (g),
(T6) m(τ (f )) = m(f ).

The next important notion is notion of almost everywhere coincidence in-
troduced in Riec̆an and Jurec̆ková (2005). Let m be a state on F . We say that
observables y, z : B(R) → F coincide m-almost everywhere, i.e. y = z m-almost
everywhere, if

m(h(�)) = 1

where � = {(u, v) ∈ R
2; u = v} and h : B(R2) → F is the joint observable of

y, z.
This notion doesn’t depend on the choice of the joint observable h.

Theorem 2.1. Riec̆an and Jurec̆ková (2005) The observables y,z coincide m-
almost everywhere if and only if

m (y((−∞, u)) · z((u,∞))) = 0 and m (y((u,∞)) · z((−∞, u))) = 0

for each u ∈ R.

3. INVARIANT OBSERVABLES

In this section we prove that the limit of Cesaro means is an invariant ob-
servable for each integrable observable x. Our motivation is the individual ergodic
theorem (see Riec̆an and Neubrunn, 1997 Theorem 8.7.2).

Individual Ergodic Theorem. Let x be an integrable observable and τ be an
m-preserving transformation. Then there is an integrable observable x∗ satisfying
the following conditions:

(i) E(x∗) = E(x);
(ii) 1

n

∑n−1
i=0 τ i ◦ x → x∗m-almost everywhere.

First we start with the Kolmogorov construction.
Let hn be the joint observable of observables x, τ ◦ x, . . . , τ n ◦ x. The system

{Pn = m ◦ hn, n ∈ N}
is a consistent system of probability measures. By the Kolmogorov theorem there
exists a probability measure on (RN,B(RN)) such that

P
(
�−1

n (A)
) = Pn(A)



918 Lendelová

for each A ∈,B(Rn), n ∈ N, where �n : B(RN) → B(Rn) is the projection defined
by �n((ui)∞1 ) = (u1, . . . , un)

Define the measure preserving transformation T : R
N → R

N by

T ((ui)
∞
1 ) = (vi)

∞
1 , vi = ui+1

and the first coordinate random variable ξ : R
N → R by

ξ ((ui)
∞
1 ) = u1.

Let gn : R
n → R be a Borel measurable function defined by

gn(u1, . . . , un) = 1

n

n∑
i=1

ui.

Theorem 3.1. Riec̆an and Neubrunn (1997) Let yn
1
n

∑n−1
i=0 τ i ◦ x = hn ◦

g−1
n , ηn = 1

n

∑n−1
i=0 ξ ◦ T i . Then the sequence of observables (yn)n converges m-

almost everywhere to an observable y and

P ({u ∈ R
N; lim

n→∞ ηu(u) < t}) = m (y((−∞, t)))

for each t ∈ R.

Now we consider the sequence of observables τ ◦ x, τ 2 ◦ x, τ 3 ◦ x, . . . and
the Cesaro means defined by

zn = 1

n

n∑
i=1

τ i ◦ x = hn ◦ g−1
n

where hn is the joint observable of the observables τ ◦ x, τ 2 ◦ x, . . . , τ n ◦ x.

Proposition 1. Riec̆an and Jurec̆ková (2005) Put kn+1(u1, u2, . . . , un+1) =
1
n

∑n+1
i=2 ui = gn(u2, . . . , un+1) Then zn = hn+1 ◦ k−1

n+1.

Theorem 3.2. Riec̆an and Jurec̆ková (2005) Let ξn = 1
n

∑n
i=1 ξ ◦ T i = ηn ◦ T .

Then the sequence of observables (zn)n converges m-almost everywhere to an
observable z and

P ({u ∈ R
N; lim

n→∞ ξn(u) < t}) = m (z((−∞, t)))

for each t ∈ R Moreover z = τ ◦ y.

The following two theorems were proved for P-observables y, z, i.e. y(C ∩
D) ≤ y(C) · y(D) and z(C ∪ D) ≤ z(C) · z(D) for each C,D ∈ B(R) in paper
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(Riec̆an and Jurec̆ková, 2005). We show that the assumption of P-observable can
be omitted.

Theorem 3.3. Let y, z be observables in F such that z = τ ◦ y, τ : F → F be
the σ -homomorphism with properties [T1]–[T6] and m be a state on F . Then for
all t ∈ R it holds:

m (y((−∞, t)) · z((t,∞))) = 0 and m (y((t,∞)) · z((−∞, t))) = 0

Proof: Evidently

m (y((−∞, t)) · z((t,∞))) = m

(
y((−∞, t)) ·

∞∨
n=1

z

(〈
t + 1

n
,∞

)))
.

Therefore it is sufficient to prove

m (y((−∞, t)) · z(〈s,∞))) = 0

for t < s.
Of course,

m (y((−∞, t)) · z(〈s,∞))) ≤ m (y((−∞, t)) ∧ z(〈s,∞)))

and

m (y((−∞, t)) ∧ z(〈s,∞))) = m (y((−∞, t)) ∧ (1F − z((−∞, s))) =
= m (y((−∞, t))) − m (y((−∞, t)) ∧ z(〈s,∞)))

By Theorem 3.1 we have that

(1) m (y((−∞, t))) = P ({u ∈ R
N; limn→∞ ηn(u) < t}) = P ({u ∈

R
N; η(u) < t}) where η is the random variable from individual er-

godic theorem.
Now we prove that

(2) m (y((−∞, t)) ∧ z((−∞, s))) ≥ P ({u ∈ R
N; η(u) < t} ∩ {u ∈

R
N; ξ (u) < s})

where ξ = limn→∞ ξn(u) is the random variable from individual ergodic theorem.
We know that

y((−∞, t)) =
∞∨

p=1

∞∨
k=1

∞∧
i=1

k+i∧
n=k

yn

((
−∞, t − 1

p

))

z((−∞, s)) =
∞∨

q=1

∞∨
l=1

∞∧
j=1

l+j∧
m=l

zm

((
−∞, s − 1

q

))



920 Lendelová

Therefore

m(y((−∞, t)) ∧ z((−∞, s)))

= lim
p→∞ lim

k→∞
lim
i→∞

lim
q→∞ lim

l→∞
lim

j→∞
m

(
k+i∧
n=k

yn

((
−∞, t − 1

p

))

∧
l+j∧
m=l

zm

((
−∞, s − 1

q

)))
.

Moreover

m

(
k+i∧
n=k

yn

((
−∞, t − 1

p

))
∧

k+i∧
m=l

zm

((
−∞, s − 1

q

)))

= m

(
k+i∧
n=k

hn ◦ g−1
n

((
−∞, t − 1

p

))
∧

l+j∧
m=l

hm+1 ◦ k−1
m+1

((
−∞, s − 1

q

)))

= m

(
k+i∧
n=k

hw(An) ∧
l+k∧
m=l

hw(Bm)

)

where w ≥ k + i, w ≥ l + j,An = π−1
w,n(g−1

n ((−∞, t − 1
p

))), Bm = π−1
w,m+1(g−1

n

((−∞, s − 1
q

))) and t, s, p, q are constants.
By monotonicity of hw we obtain

hw(An) ≥ hw

(
k+i⋂
n=k

An

)
, n = k, . . . , k + i

hence

k+i∧
n=k

hw(An) ≥ hw

(
k+i⋂
n=k

An

)

and similarly

l+j∧
m=l

hw(Bm) ≥ hw

(
l+j⋂
m=l

Bm

)
.
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By these relations we obtain

k+i∧
n=k

hw(An) ∧
l+j∧
m=l

hw(Bm) ≥ hw

(
k+i⋂
n=k

An

)
∧ hw

(
l+j⋂
m=l

Bm

)

≥ hw

((
k+i⋂
n=k

An

)
∩

(
l+j⋂
m=l

Bm

))
.

Therefore

m

(
k+i∧
n=k

yn

((
∞, t − 1

p

))
∧

l+j∧
m=l

zm

((
−∞, s − 1

q

)))
≥

≥ m

(
hw

((
k+i⋂
n=k

An

)
∩

(
l+j⋂
m=l

Bm

)))
= P

(
�−1

w

((
k+i⋂
n=k

An

)
∩

(
l+j⋂
m=l

Bm

))

= P

(
k+i⋂
n=k

{
u ∈ R

N; gn(u1, . . . , un) < t − 1

p

}

∩
l+j⋂
m=l

{
u ∈ R

N; km+1(u1, . . . , um+1) < s − 1

q

})

hence

m (y((−∞, t)) ∧ z((−∞, s))) ≥ lim
p→∞ lim

k→∞
lim
i→∞

lim
q→∞ lim

l→∞
lim

j→∞

P

(
k+i⋂
n=k

{
u ∈ R

N; gn(u1, . . . , un) < t − 1

p

}

∩
l+j⋃
m=1

{
u ∈ R

N; km+1(u1, . . . , um+1) < s − 1

q

})

= P


 ∞⋃

p=1

∞⋃
k=1

∞⋂
n=1

{
u ∈ R

N; ηn(u) < t − 1

p

}

⋂ ∞⋃
q=1

∞⋃
k=1

∞⋂
n=1

{
u ∈ R

N; ξn(u) < s − 1

q

}


= P ({u ∈ R
N; η(u) < t} ∩ {u ∈ R

N; ξ (u) < s}).
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By (1) and (2) we obtain

m (y((−∞, t)) · z(〈s,∞))) ≤ m (y((−∞, t)) ∧ z(〈s,∞))) =
= m (y((−∞, t))) − m (y((−∞, t)) ∧ z((−∞, s))) ≤
≤ P ({u ∈ R

N; η(u) < t}) −
− P ({u ∈ R

N; η(u) < t} ∩ {u ∈ R
N; ξ (u) < s})

= P ({u ∈ R
N; η(u) < t} ∩ {u ∈ R

N; ξ (u) ≥ s})
Since η = ξ = η ◦ T P almost everywhere by individual ergodic theorem, then

P ({u ∈ R
N; η(u) < t} ∩ {u ∈ R

N; ξ (u) ≥ s}) = 0.

Hence

m (y((−∞, t)) · z(〈s,∞))) = 0

Theorem 3.4. y = z = τ ◦ y m-almost everywhere.

Proof: It follows by Theorem 2.1 and Theorem 3.3. �

4. CONCLUSION

The paper is concerned in ergodic theory for fuzzy quantum logic F . We
proved that the limit of Cesaro means is an invariant observable and show that the
assumption of P-observable is redundant in this case.

ACKNOWLEDGEMENTS

This paper was supported by Grant VEGA 1/2002/05.

REFERENCES

Cignoli, R. L. O., D’Ottaviano, M. L., and Mundici, D. (2000). Algebraic Foudations of Many-valued
Reasoning. Kluwer, Dordrecht.
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